Linear-Time FPT Algorithms via Network Flow

نویسندگان

  • Yoichi Iwata
  • Keigo Oka
  • Yuichi Yoshida
چکیده

In the area of parameterized complexity, to cope with NP-Hard problems, we introduce a parameter k besides the input size n, and we aim to design algorithms (called FPT algorithms) that run in O(f(k)n) time for some function f(k) and constant d. Though FPT algorithms have been successfully designed for many problems, typically they are not sufficiently fast because of huge f(k) and d. In this paper, we give FPT algorithms with small f(k) and d for many important problems including Odd Cycle Transversal and Almost 2-SAT. More specifically, we can choose f(k) as a single exponential (4) and d as one, that is, linear in the input size. To the best of our knowledge, our algorithms achieve linear time complexity for the first time for these problems. To obtain our algorithms for these problems, we consider a large class of integer programs, called BIP2. Then we show that, in linear time, we can reduce BIP2 to Vertex Cover Above LP preserving the parameter k, and we can compute an optimal LP solution for Vertex Cover Above LP using network flow. Then, we perform an exaustive search by fixing half-integral values in the optimal LP solution for Vertex Cover Above LP. A bottleneck here is that we need to recompute an LP optimal solution after branching. To address this issue, we exploit network flow to update the optimal LP solution in linear time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Half-integrality, Lp-branching and Fpt Algorithms∗

A recent trend in parameterized algorithms is the application of polytope tools to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). Although this approach has yielded significant speedups for a range of important problems, it requires the underlying polytope to have very restrictive properties, including half-integrality and Nemhauser-Trotter-style persistence properties. ...

متن کامل

Linear-Time FPT Algorithms via Half-Integral Non-returning A-path Packing

A recent trend in the design of FPT algorithms is exploiting the half-integrality of LP relaxations. In other words, starting with a half-integral optimal solution to an LP relaxation, we assign integral values to variables one-by-one by branch and bound. This technique is general and the resulting time complexity has a low dependency on the parameter. However, the time complexity often becomes...

متن کامل

FPT Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs

It often happens that although a problem is FPT, the practitioners prefer to use imprecise heuristic methods to solve the problem in the real-world situation simply because of the fact that the heuristic methods are faster. In this paper we argue that in this situation an FPT algorithm for the given problem may be still of a considerable practical use. In particular, the FPT algorithm can be us...

متن کامل

Half-integrality, LP-branching and FPT Algorithms

A recent trend in parameterized algorithms is the application of polytope tools (specifically, LPbranching) to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). Though the list of work in this direction is short, the results are already interesting, yielding significant speedups for a range of important problems. However, the existing approaches require the underlying polyt...

متن کامل

An Efficient Extension of Network Simplex Algorithm

In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014